Main menu

Pages


Ordinary differential equations exercises 

Exercises of differential equations 1: 

We consider the differential equation   

                                                    (E):y+y=ex

1-Prove that the function F defined is on ℝ by

                                                    F(x)=xex




Represent a solution to the differential equation

2-We consider the differential equation  (E');y'+y=0

    Solve the differential equation (E') on ℝ 

3-Let the function G defined and derivable on ℝ. 

a) Prove that the function G is a solution to the differential equation (E) If and only if function G-F is a solution to the differential equation (E').

b) conclude all differential equation solutions.

4-Determine the special solution K of the differential equation (E) where K(0)=2

Differential equations exercises 2: 

Let the differential equation be defined on ℝ by phrase:

y'+y=4xe^{x}

1- Solve the differential equation y'+y=0  ..........(2) on ℝ Where y is a derivable function on ℝ.
2-
 a)Prove that the solution to the differential equation (1) is the function U defined on   by:

u(x)=(2-1)e^{x}
b) Prove that if the function V is a solution to the differential equation (2) then U+V  is the solution of the differential equation (1)
c) conclude the group solutions of differential equation (1).
3- determine the function f  Where the function   is the solution of the differential equation (1) and Check that f(0)=1.
4- We put for every natural number n: 
                                                                    
W_{n}=e^{-n}f(n)

Calculate in terms of n,the total Sn=W0+W1+..........+Wn-1

Differential equations exercises 3: 

Let us be the following two differential equations:

                                                         (E):    y'-2y-1=0                           

                                         (E):y2y=1exsin(x)

                                                      

Answer true or false with the reasoning:
1- The differential equation (E) accepts a polynomial function as a solution .
2- Let it be a positive function  g defined on ℝ, If g is a solution to the differential equation  (E) then g  is increasing on ℝ . 
3- The function h defined on ℝ is a solution to the differential equation (E), where:                                                                                                                                                                      
                                                            h(x)=3e2x12


4-   The function k defined on ℝ is a solution to the differential equation (E'), where: : 

                                             k(x)=ex2[cos(x)+sin(x)]


Exercises of differential equations 4: 

Answer true or false with the reasoning:

Let the following differential equation :

                                                         (E):    3y'+2y=0                  

1- Solutions to the differential equation (E) are the functions that are written in the figure:
                                                      f(x)=ce23x

2-  if it was f(-3)=√e  Then the  differential equation (E) accepts a single scaled solution as follows.

3- the differential equation Solutions y'+5y=35 is the functions :
                                                            xce5x+7


objectives of the exercises: 

- Solving differential equations

- Find the special solution to the differential equation

- Determine the functions that represent all solutions of the differential equation

- Ensure that a function is a solution to the differential equation

- Ordinary differential equations practice problems

These exercises help you understand differential equations and prepare you to apply them in various fields.

Read also:











 ,
reactions

Comments